

Este documento tiene como objetivo introducir conceptos básicos del lenguaje Python 3 y mostrar su
implementación en COLAB. Por medio de ejercicios que lo llevarán a familiarizarse con la sintaxis y
lógica de programación en el lenguaje.

Índice

Qué es Python

¿Dónde comenzar?
CONDA

Guía para utilizar COLAB en el curso
Configuración de ambientes

Ejercicios

Conceptos Básicos
Ejercicio 1: Asignación de una variable
Ejercicio 2: Asignación múltiple de variables
Ejercicio 3: Tipos de datos
Ejercicio 4: Operadores

Colecciones
Listas

Ejercicio 5: Lista de listas (matriz)
Tuplas

Ejercicio 6: Tuplas
Diccionarios

Ejercicio 7: Diccionarios

Estructuras de control
Ejercicio 8: Ciclo for
Ejercicio 9: Condicionales

Funciones
Ejercicio 10: Funciones

Funciones anónimas lambda
Ejercicio 11: Función lambda

Iteradores
Generadores

Ejercicio 12: Generador

Cadenas

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Ejercicio 13: Sub cadenas
Ejercicio 14: Formato de cadenas

Clases y Objetos
Ejercicio 15: Crear una Clase
Ejercicio 16: Definir métodos

Módulos y paquetes
Ejercicio 17: Matplotlib
Ejercicio 18: Plot de una función
Ejercicio 19: Arreglos numpy
Ejercicio 20: OS escritura de archivos
Ejercicio 21: Lectura de archivos csv

Archivos en COLAB
Ejercicio 22: Cargar archivos a COLAB
Ejercicio 23: Open CV2
Ejercicio 24: Copiar y reescalar imágenes
Ejercicio 25: Plot de imágenes
Ejercicio 26: Rectangulos con CV2
Ejercicio 27: numpy save npz

Extras
Histogramas

Ejercicio 28: Histogramas
Aplicando conceptos

Ejercicio 29: plots 2D y 3D
Ejercicio 30: Convolución 2D

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Qué es Python
Python ​es un lenguaje de programación simple con sintaxis limpia, es portable, interpretado, orientado a
objetos, de código abierto, de tipado dinámico y fuertemente tipado. Su filosofía es el famoso​ Zen de Python

Utilizamos Python 3 porque es fácil de aprender, fácil de entender y de utilizar, sobre todo para prototipado
rápido.

¿Dónde comenzar?
Existe mucha documentación en internet, conozca la página oficial ​https://www.python.org/
donde podrá descargar python, realizar tutoriales completos y leer la documentación oficial.

Tutoriales
Instalar Python con miniconda
The Python Tutorial
Programación en Python - Nivel básico
Curso Python desde 0
Curso de Python Básico Gratis

Libros para aprender Python
Los 7 Mejores Libros para Aprender Python
Python para todos

CONDA
Conda ​es un sistema de gestión de paquetes de código abierto y un sistema de gestión del entorno que se
ejecuta en Windows, macOS y Linux

Conda como gestor de paquetes le ayuda a encontrar e instalar paquetes, conda también es un administrador
de entorno. Podemos utilizarlo por medio de Anaconda o Miniconda.

Anaconda es una distribución de paquetes científicos, entre ellos, Python. Conda para Python incluye una
variedad de paquetes muy útiles: Virtualenv, Pandas, Jupyter y más. Anaconda es la versión completa e
incluye más de que 150 paquetes.

Miniconda es una versión básica, que únicamente incluye a conda, Python y otros paquetes básicos. Ideal
para crear ambientes desde cero.

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

https://es.wikipedia.org/wiki/Zen_de_Python
https://www.python.org/
https://conda.io/projects/conda/en/latest/user-guide/install/index.html
https://docs.python.org/3/tutorial/
https://entrenamiento-python-basico.readthedocs.io/es/latest/
https://www.youtube.com/playlist?list=PLU8oAlHdN5BlvPxziopYZRd55pdqFwkeS
https://www.codigofacilito.com/cursos/Python
https://www.youtube.com/watch?v=6_jlfYk8HAc
http://www.utic.edu.py/citil/images/Manuales/Python_para_todos.pdf
https://es.wikipedia.org/wiki/Conda_(gestor_de_paquetes)

Guía para utilizar COLAB en el curso
Colaboratory ​es un entorno gratuito de Jupyter Notebook que no requiere configuración y que se ejecuta
completamente en la nube.

Colaboratory te permite escribir y ejecutar código, guardar y compartir tus análisis y tener acceso a recursos
informáticos muy potentes, todo de forma gratuita desde el navegador.

Video tutorial introductorio: ​https://youtu.be/n7RdjB9bDKo

Instrucciones de uso para los cursos Actumlogos
Requisito​: Tener cuenta de Gmail

1) Entrar a su cuenta de Gmail

2) Acceda a su ​Drive ​desde el icono de Google Apps

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

https://medium.com/marvik/google-colab-tips-para-principiantes-e39d6e7051d4
https://youtu.be/n7RdjB9bDKo

3) Dentro de su ​Drive​, de ​clic derecho​ sobre su unidad y seleccione del menú la opción:

Más​ > ​ Conectar más aplicaciones

4) Escriba la palabra ​colab ​en la barra de búsqueda y seleccione el botón ​+ CONECTAR​, acepte y cierre la

ventana para continuar

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

5) Ahora podrá crear archivos notebooks en su drive de la siguiente forma:

a) Vaya nuevamente a su unidad en ​Drive

b) De clic derecho sobre su unidad (como en el punto 3) y seleccione del menú la opción:

Más​ > ​Colaboratory

c) Modifique con doble clic el nombre del archivo para identificar su código

6) Escriba un código de prueba y de clic en el icono de play para ejecutar el código

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

7) Para cerrar el archivo, de clic en este símbolo ​CO​ localizado en la parte superior izquierda del notebook

Configuración de ambientes

Se puede configurar el ambiente para código Python2 o Python3, así como en modo CPU, GPU o
TPU, la configuración por defecto es Python3 - CPU.

Para fines prácticos verifique siempre que sus ambientes están en modo GPU, para ello realice una
de las siguientes opciones:

(1) Vaya a la pestaña ​Edit​ y seleccione

“Notebook settings”

(2) Vaya a la pestaña ​Runtime y seleccione

“change runtime type”

Se mostrará la siguiente ventana, seleccione en ​Harware accelerator la opción de ​GPU ​y salve.
None equivale a utilizar CPU.

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Ejercicios

La dinámica de los ejercicios siguientes le ayudará a comprender conceptos de programación de python
utilizados en los cursos, deberá seguir las ​instrucciones en color azul​ y analizar cuidadosamente los códigos.

Los códigos de los ejercicios se encuentran en la carpeta compartida “30ejercicios_colab”, son notebooks
.ipynb que puede editar y correr con colab.

En python los nombres de variables, objetos, funciones y más, tiene la siguiente convención:

module_name, package_name, ClassName, method_name, ExceptionName,

function_name, GLOBAL_CONSTANT_NAME, global_var_name,

instance_var_name, function_parameter_name, local_var_name

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Conceptos Básicos

Ejercicio 1: Asignación de una variable

Analice con cuidado el siguiente código python

Los comentarios en python comienzan con el símbolo almohadilla

print(​"Esta es una cadena"​) ​# una sentencia NO termina en ;

Esta es una asignación a una variable

variable = ​"Esta es otra cadena"

Así se imprime una variable

print(variable)

Su salida es la siguiente:

Esta es una cadena

Esta es otra cadena

Complete el siguiente código con las indicaciones dadas por los comentarios.
Puede copiar el código en COLAB para probarlo.

NOTA: NO utilice acentos en las variables o nombres de funciones
cadena = ​"cadena"
print(cadena)

Asigne a la variable cadena con comillas simples 'Esta es una cadena'

cadena = ____

En la siguiente línea, imprima la variable cadena

Asigne el número 5 a la variable numero e imprima su valor

numero = ____

Resultado esperado:

cadena

Esta es una cadena

5

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Ejercicio 2: Asignación múltiple de variables

Asignar el mismo valor a múltiples variables

a = b = c = ​0
print(a, b , c)

Asignar a múltiples variables, valores diferentes

x, y, z = ​10​, ​3.5​, ​"hola"
print(​"x="​, x)
print(​"y="​, y)
print(​"z="​, z)

Su salida es la siguiente:

0 0 0

x= 10

y= 3.5

z= hola

Complete código del ejercicio02.ipynb con las indicaciones dadas por los comentarios.
"""

Usted tiene 50 pesos en el bolsillo, necesita comprar 3 artículos

Un café, galletas y papas para soportar el hambre

"""

mi_dinero = ​50

Asigne el valor de 24 pesos al café, 12 a las galletas y 13 a las papas

cafe, papas, galletas = _______________

Imprima el valor de los 3 artículos de la forma

print('artículo=', variable)

Imprima la resta de los artículos al dinero que tiene

Imprima cuanto le quedaría si solo compra café y galletas

Resultado esperado:

cafe= 24

galletas= 12

papas= 13

1

14

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Ejercicio 3: Tipos de datos

En Python podemos ver el tipo de dato de las variables con la sentencia ​type() y convertir a otros tipos de
datos como se muestra en el código

a = ​5
b = ​2.55
c = ​"100"

print(type(a))

print(type(b))

print(type(c))

Transformar a otro tipo de dato (Casting de variables)

flotante = float(a) ​# convierte el 5 a 5.0
cadena = str(b) ​# convierte 2.55 a una cadena "2.55"
entero = int(c) ​# convierte la cadena "100" a un número 100

print(cadena, type(cadena))

print(flotante, type(flotante))

print(entero, type(entero))

Su salida es la siguiente:

<​class​ '​int​'>
<​class​ '​float​'>
<​class​ '​str​'>
2.55 <​class​ '​str​'>
5.0 <​class​ '​float​'>
100 <​class​ '​int​'>

Corrija el código de ejercicio03.ipynb para que no mande error

cad = ​"Vehículo"
num = ​250

print(cad + num) ​# ​TODO:​ Corrija la línea para imprimir una cadena

A una variable se le puede asignar otro tipo de dato sin especificar de qué tipo es

variable = ​"Juan Carlos"
print(​"variable:"​+ variable, ​"tipo:"​+ type(variable)) ​# ​TODO:​ Corrija la línea

variable = ​2.5​ + ​3
print(variable:, variable+ ​"tipo:"​, type variable) ​# ​TODO:​ Corrija la línea

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Resultado esperado:

Vehículo250

variable: Juan Carlos tipo: <​class​ '​str​'>
variable​: 5.5 tipo: <​class​ '​float​'>

Los ​operadores en python​ son aquellos que utilizamos para manipular los datos, los más elementales son los
siguientes:

Aritméticos

Descripción Operador

Suma +

Resta -

Multiplicación *

Potencia **

División /

División entera (Piso) //

Módulo %

Comparación

Descripción Operador

Son iguales ==

Son diferentes !=

Menor que, menor o igual < , <=

Mayor que, mayor o igual >, >=

Lógicos

Descripción Operador

Se cumplen ambos and

Se cumple alguno or

Negación not

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

https://www.tutorialspoint.com/python/python_basic_operators

Ejercicio 4: Operadores

Realice las siguientes operaciones
cadena_1 = ​"El oso come "
cadena_2 = ​'mucha miel'

PI = ​3.141592
a, b, c = ​25​, ​8.3​, ​12

Defina la variable concat y en ella concatene las cadenas 1 y 2

Imprima concat

Calcule el área de un círculo de radio 3.33 e imprima su valor

area = ____

print(​"El área es:"​,)

Calcule la ecuación "(a x b)^2 / c" y el resultado guárdelo en x

Incremente x en 1, con la expresión reducida de x = x + 1

print(x)

Nota: A diferencia de otros lenguajes de programación, python no cuenta con el incremento abreviado
++

Resultado esperado:

El oso come mucha miel

El área es: 34.8367995288

x= 3589.0208333333344

Colecciones

Listas
Las listas en python son

● heterogéneas​: pueden estar conformadas por elementos de distintos tipo, incluidos otras listas.
● mutables​: sus elementos pueden modificarse.

Métodos: append(), count(), extend(), index(), insert(), pop(), remove(), reverse(), sort()

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

lista_numeros = [​1​, ​2​, ​3​, ​4​, ​5​, ​6​]
lista_compuesta = [​"ABC"​, ​125​, ​.001​, lista_numeros, ​":)"​]
print(lista_compuesta)

Para modificar valores de una lista, se accede al índice entre corchetes

Rango [0 a n-1]

lista_numeros[​0​] = ​99​ ​# Modifica el primer número de la lista
print(lista_numeros)

Los índices negativos acceden en sentido inverso (último a primero)

Rango [-1 a -n]

lista_numeros[​-1​] = ​100​ ​# Modifica el último elemento de la lista

El operador : permite iterar en los elementos de una lista

[inicio : m-1]

print(lista_compuesta[​0​:​3​])

Si no se indica el valor inicial itera desde el comienzo

print(lista_compuesta[:​3​]) ​# Equivalente

Si no se indica el valor final itera hasta el último elemento

print(lista_numeros[​2​:])

Imprime los elementos de la lista desde el índice 1 y de 2 en 2

print(lista_numeros[​1​::​2​])

Su salida es la siguiente:

[​'ABC'​, 125, 0.001, [1, 2, 3, 4, 5, 6], ​':)'​]
[99, 2, 3, 4, 5, 6]

[​'ABC'​, 125, 0.001]
[​'ABC'​, 125, 0.001]
[3, 4, 5, 100]

[2, 4, 100]

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Ejercicio 5: Lista de listas (matriz)
Se puede anidar listas en una lista para crear una matriz

list_1 = [​0​, ​1​, ​2​]
list_2 = [​"3"​, ​"4"​, ​"5"​]
list_3 = [​6.0​, ​7.0​, ​8.0​]
matriz = []

"""

Cree una matriz de enteros de la forma

|2 1 0|

|3 4 5|

|8 7 6|

utilizando como base las listas 1 a 3

utilize la sentencia append() para crear la matriz

"""

Crear matriz

Convertir a enteros

matriz[​1​][​0​] = int(matriz[​1​][​0​])
matriz____

matriz____

matriz____

matriz____

matriz[​2​][​2​] =

Imprima la matriz con un print

Resultado esperado:

[[2, 1, 0], [3, 4, 5], [8, 7, 6]]

Tuplas
Son muy similares a las listas y también son heterogéneas, difieren en que son

● inmutables​: sus elementos NO pueden modificarse una vez creada.
● Utilizan () en lugar de [] para definirlas

Métodos: count(), index()

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Ejercicio 6: Tuplas
Cree una tupla y llamela “otra_tupla”, inicializarla para que contenga a la lista como primer
elemento y a tupla como segundo elemento. Descomente la última línea para probar que una
tupla no se puede modificar.

tupla = (​1​, ​2​, ​3​, ​"xyz"​, ​True​, [​0.1​, ​1.0​])
lista = [​"gallina"​, ​"pavo"​, ​"avestruz"​]
_____ = _____

print(otra_tupla)

print(otra_tupla[​0​][​2​])
print(otra_tupla[​1​][​-1​])

Una tupla de un elemento se escribe así:

uni_tupla = (​1​,) ​# Sin la coma seria un variable normal
print(uni_tupla, type(uni_tupla))

Descomente la última línea

La siguiente linea marca error, por que no se puede modificar una tupla

otra_tupla[0] = "variable"

Resultado esperado:

([​'gallina'​, ​'pavo'​, ​'avestruz'​], (1, 2, 3, ​'xyz'​, ​True​, [0.1, 1.0]))
avestruz

[0.1, 1.0]

(1,) <​class​ '​tuple​'>

Traceback​ (most recent call last):
 otra_tupla[0] = "variable"

TypeError: 'tuple' object does ​not​ support item assignment

Diccionarios
Los diccionarios son una colección no ordenada de pares, estos pares son:

● llaves​: mapean a los valores, es decir, con ellas se puede acceder a un valor dentro del diccionario. La
llave es única dentro de un diccionario y debe ser de tipo inmutable (cadena, tupla, numérico).

● Valores​: son objetos, pueden ser cualquier tipo de dato.

Los diccionarios a diferencia de las listas y tuplas, se definen con llaves { }. Los pares se relacionan entre sí
con el símbolo ​:​ de la siguiente forma​ {llave1 : valor1, llave2 : valor2, ...}

Métodos: clear(), copy(), fromkeys(), get(), has_key(), setdefault(), update(), values()

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Ejercicio 7: Diccionarios
Edite el código ​ejercicio07.ipynb​ en COLAB

● Modifique el código para obtener las llaves de un diccionario e imprimalas
● Obtenga los valores del diccionario e imprima
● Sobreescribe el valor de llave2 por el numero 250

diccionario = {​"1"​:​"primer elemento"​,
 ​"llave2"​:[​3.5​, ​"B"​],
 ​100​:(​"jugo"​,​"fruta"​, ​"pan"​)}

print(diccionario)

Obtener las llaves en el diccionario

var_llaves = _____

print(​"Imprimimos las llaves"​)
print(_____)

Obtener solamente los valores del diccionario

var_valores = _____

print(​"\nImprimimos los valores"​)
print(_____)

Obtener el segundo elemento del diccionario

elemento = diccionario.get(​"llave2"​)
print(​"\nEl elemento 2 es:"​)
print(elemento)

Modifica el segundo elemento

diccionario[_____] = _____

print(diccionario)

Resultado esperado:

{​'1'​: ​'primer elemento'​, ​'llave2'​: [3.5, ​'B'​], 100: (​'jugo'​, ​'fruta'​, ​'pan'​)}
Imprimimos las llaves

dict_keys([​'1'​, ​'llave2'​, 100])

Imprimimos los valores

dict_values([​'primer elemento'​, [3.5, ​'B'​], (​'jugo'​, ​'fruta'​, ​'pan'​)])

El elemento 2 es:

[3.5, ​'B'​]
{​'1'​: ​'primer elemento'​, ​'llave2'​: 250, 100: (​'jugo'​, ​'fruta'​, ​'pan'​)}

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Estructuras de control
La indentación es importante en python, sustituye los corchetes que delimitan los bloques de código en otros
lenguajes, lo más adecuado es utilizar 4 espacios para indentar un bloque o con tabulación, sin embargo, no
se deben mezclar tabuladores con espacios en un bloque.

El siguiente código muestra la iteración de un diccionario con un ciclo for

diccionario = {​"1"​:​"primer elemento"​,
 ​"llave2"​:[​3.5​, ​"B"​],
 ​100​:(​"jugo"​,​"fruta"​, ​"pan"​)}

Recorre un diccionario con un ciclo for

for​ llave, valor ​in​ diccionario.items():
 print(​"llave:"​, llave)
 print(​"valor:"​, valor)

Su salida es la siguiente

llave: 1

valor: primer elemento

llave: llave2

valor: [3.5, ​'B'​]
llave: 100

valor: (​'jugo'​, ​'fruta'​, ​'pan'​)

Ejercicio 8: Ciclo for
Edite el código ​ejercicio08.ipynb​ en COLAB

● Cree una tupla con 10 elementos
● Recorra la tupla con ciclo for y cada 2 elementos, haga una copia de ese elemento en

una lista con append()
● Imprima la lista creada con un for
● En un diccionario guarde los elementos de la lista con las llaves:

“uno”, “dos”, “tres”, “cuatro”, “cinco”
Resultado esperado:

1

3

5

7

9

{​'uno'​: 1, ​'dos'​: 3, ​'tres'​: 5, ​'cuatro'​: 7, ​'cinco'​: 9}

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Ejercicio 9: Condicionales

lista = [​"cadena"​, ​25​, ​3.50000000000​, ​False​]

for​ item ​in​ lista: ​# El operador in
 print(item)

 ​# is, compara ambos lados de la expresión condicional
 ​if​ item ​is​ ​3.5​: ​# True si es el mismo objeto
 print(​"%.3f es Flotante"​ %(item)) ​# Print con formato
 ​break​ ​# break termina el ciclo y continúa el programa

print(​"Se termino el ciclo for"​)

in, devuelve True cuando un elemento está en una secuencia.

if​ lista[​1​] ​in​ lista:
 print(​"%d esta en la lista"​ %(lista[​1​]))

not in, devuelve True cuando un elemento NO está en una secuencia.

if​ ​10​ ​not​ ​in​ lista:
 print(​"No se encontro 10 en la lista"​)

Su salida es la siguiente:

cadena

25

3.5

3.500 es Flotante

Se termino el ciclo ​for
25 esta en la lista

No se encontro 10 en la lista

Edite el código ​ejercicio09.ipynb​ en COLAB

Se tiene una lista con 20 elementos, aleatoriamente un elemento sera la cadena “alto”

● Itere la lista utilizando while, e imprima únicamente cuando encuentre la cadena “alto”
● Itere la lista con ciclo for imprimiendo cada elemento, detenga el ciclo cuando

encuentre la cadena “alto” sin imprimir la cadena
Resultado esperado:
alto

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Iteración actual: 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Funciones
Una función es un bloque de código, recibe argumentos como entrada para realizar una tarea específica,
devuelve un valor al término de su ejecución. Este bloque tiene un nombre asociado (el nombre de la función),
su sintaxis es la siguiente:

def​ ​nombre_funcion​(parametros):
 sentencia

 ...

 sentencia

 ​return​ [expresion] ​# El retorno es opcional

Una función puede tener argumentos con valores predeterminados

def​ ​funcion_suma​ (x, y=​0​):
 print(​"x= %.2f"​ % x)
 print(​"y= %.2f"​ % y)
 ​return​ x + y

Declaración prototipo, con pass indica que no se definido la función

def​ ​foo​():
 ​pass​ ​# ​TODO:​ Implementar algo aquí

print(funcion_suma(​3.666​))
print()

print(funcion_suma(​2​, ​3​))

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

print(foo())

Su salida es la siguiente:

x= 3.67

y= 0.00

3.666

x= 2.00

y= 3.00

5

None

Ejercicio 10: Funciones

Edite el código ​ejercicio10.ipynb​ en COLAB

● Escriba una función que calcule el volumen de una pirámide
● Escriba otra función que calcule el volumen de un cilindro

Resultado esperado con los valores de prueba:

Voúmen de la piramide: 10.5

Voúmen ​del​ cilindro: 9.424769999999999

Funciones anónimas lambda

En python lambda es una expresión que crea funciones anónimas, es decir que no tienen nombre, crea un
objeto de tipo función en línea. Otra manera de entender las funciones lambda, es una poder definir una
función simple en una sola línea y que pueda ser argumento de otra función u objeto.

El contenido de una función anónima debe ser una única expresión en lugar de un bloque de acciones.

Sintaxis:

lambda​ parametros : expresion

El siguiente código utiliza la expresión lambda para realizar la suma de 2 números y para calcular el cuadrado
de los valores de una lista

Función que devuelve la suma de 2 números

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

def​ ​suma​(a, b):
 resultado = a + b

 ​return​ resultado

print(​"función a+b ="​, suma(​8​, ​2​))

Podemos realizar la misma función como una expresión lambda

temp = ​lambda​ x, y: x + y
print(​"lambda a+b ="​, temp(​8​, ​2​))

Aplicando las funciones lambda

valores = [​1​, ​2​, ​3​, ​4​, ​5​, ​6​, ​7​, ​8​, ​9​, ​10​]
print(valores)

map aplica una operación (definida con lambda)

a cada elemento de una lista

resultados = map(​lambda​ x : x**​2​, valores) ​# Devuelve un objeto map
Transformamos el resultado a tipo list para visualizar

print(list(resultados))

Su salida es la siguiente:

función a+b = 10

lambda​ a+b = 10
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Ejercicio 11: Función lambda

Edite el código ​ejercicio11.ipynb​ en COLAB

● Cree una lista con 50 números ​aleatorios ​del 0 al 49, use for y append
● Con una función, obtenga los números pares de la lista y guardarlos en una nueva lista
● Utilice map para aplicar la función y = sin(x) a la lista guardada
● Imprima los valores obtenidos

Ejemplo de salida​, recuerde que ​son números aleatorios​, ​no espere el mismo resultado
[​0​, ​18​, ​42​, ​44​, ​18​, ​20​, ​22​, ​12​, ​36​, ​24​, ​36​, ​20​, ​6​, ​24​, ​24​, ​42​, ​26​, ​38​, ​38​, ​26​, ​12​, ​26​, ​16​, ​16​,
4​, ​14​]
[​0.0​, ​-0.7509872467716762​, ​-0.9165215479156338​, ​0.017701925105413577​, ​-0.7509872467716762​,

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

0.9129452507276277​, ​-0.008851309290403876​, ​-0.5365729180004349​, ​-0.9917788534431158​,
-0.9055783620066238​, ​-0.9917788534431158​, ​0.9129452507276277​, ​-0.27941549819892586​,
-0.9055783620066238​, ​-0.9055783620066238​, ​-0.9165215479156338​, ​0.7625584504796027​,
0.2963685787093853​, ​0.2963685787093853​, ​0.7625584504796027​, ​-0.5365729180004349​,
0.7625584504796027​, ​-0.2879033166650653​, ​-0.2879033166650653​, ​-0.7568024953079282​,
0.9906073556948704​]

Iteradores
Un iterador es un objeto que tiene una función next(), es decir, cuando se le llama, devuelve la siguiente
elemento en la secuencia. Las listas, las tuplas, los diccionarios y los conjuntos son todos objetos iterables.
Son contenedores iterables de los que puedes obtener un iterador.

El metodo ​iter()​ es usado para obtener un iterador de un objeto iterable.

tupla = (​"tres"​, ​"dos"​, ​"uno"​)
iterador = iter(tupla)

print(type(tupla))

print(type(iterador))

print(next(iterador))

print(next(iterador))

print(next(iterador))

Su salida es la siguiente:

tres

dos

uno

<​class​ '​tuple​'>
<​class​ '​tuple_iterator​'>

Generadores

Los Generadores son usados para crear iteradores, son simples funciones las cuales devuelven un objeto de
tipo iterador. Utiliza la sentencia ​yield ​en lugar de return que puede suspenderlo o reanudarlo en tiempo de
ejecución.
En otras palabras, devuelve una secuencia de elementos cada que se le llama y se pone en suspensión hasta
ser llamado nuevamente.

def​ ​generator_lotes​(lote=​2​):

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

 i = ​0
 ​while​ ​True​:
 arr = []

 ​for​ k ​in​ range(lote):
 arr.append(i)

 i += ​1
 ​yield​ arr

itera = generator_lotes()

print(type(itera))

print(next(itera))

print(next(itera))

print(next(itera))

Su salida es la siguiente:

<​class​ '​generator​'>
[0, 1]

[2, 3]

[4, 5]

Ejercicio 12: Generador
Edite el código ​ejercicio12.ipynb​ en COLAB

Cree un generador que devuelva la serie de fibonacci

● Imprima los primeros 10 elementos de la secuencia

Resultado esperado:

1

1

2

3

5

8

13

21

34

55

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Cadenas

El manejo de cadenas es importante en cualquier lenguaje

Ejercicio 13: Sub cadenas
Edite el código ​ejercicio13.ipynb​ en COLAB

● Averigue el método para cortar cadenas en python y utilícelo para separar una cadena
larga en palabras

● Tiene una lista de archivos 4 archivos con nombres “archivo_n.jpg”, separe la cadena
en dos, separarla por el punto

● Obtenga una subcadena manualmente utilizando acceso por índices

Resultado esperado:

[​'never'​, ​'stop'​, ​'LEARNING'​, ​'because'​, ​'life'​, ​'never'​, ​'stops'​, ​'TEACHING'​]
arreglo de 2 elementos

[​'imagen_1'​, ​'jpg'​]
arreglo de 2 elementos

[​'imagen_2'​, ​'jpg'​]
arreglo de 2 elementos

[​'imagen_3'​, ​'jpg'​]
arreglo de 2 elementos

[​'imagen_4'​, ​'jpg'​]
LEARNIN

longitud: 7

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Ejercicio 14: Formato de cadenas
Revise la documentación de ​formateo de cadenas​ en python para realizar este ejercicio.

Edite el código ​ejercicio14.ipynb​ en COLAB

● En la primer celda, formateara 4 tipos de datos (str, int, bool, float) en un print para
obtener la salida deseada. Utilice la documentación mencionada

Resultado esperado:

Buenos días a todos y todas

 Buenos días a todos y todas

999999999999999

9.99999999999999E+14

True

1

1.25193565145e-06

0.00000125

● En la segund acelda averigue cómo replicar el contenido de una lista sin utilizar append

o ciclos for

Resultado esperado:

[5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]

Clases y Objetos
Clase: Una clase es una disposición de variables y funciones en una sola entidad lógica. Funciona como una
plantilla para crear objetos. Cada objeto puede usar variables de clase y funciones como sus miembros.

Objeto: El objeto es una instancia de una clase creada en tiempo de ejecución. Un objeto comprende tanto
miembros de datos (variables de clase y variables de instancia) como métodos.

__init__(self) es un método especial, que se llama constructor de clase o método de inicialización al que
Python llama cuando crea una nueva instancia de esta clase. En python self representa la instancia de una
clase. Funciona como un controlador para acceder a los miembros de la clase, como los atributos de los
métodos de clase.

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

https://pyformat.info/

Los atributos o propiedades de los objetos son las características que puede tener un objeto, como el color. Si
el objeto es Persona, los atributos podrían ser: cedula, nombre, apellido, sexo, etc…

Los métodos describen el comportamiento de los objetos de una clase. Estos representan las operaciones
que se pueden realizar con los objetos de la clase

class​ ​Persona​:
 ​# Constructor que inicializa los atributos
 ​def​ ​__init__​(self, nombre=None, apellido=None, edad=None, sexo=None):
 self.nombre = nombre

 self.apellido = apellido

 self.edad = edad

 self.sexo = sexo

 ​# Método que escribe la información de Persona
 ​def​ ​yo_soy​(self):
 print(​"Hola, me llamo: "​, self.nombre, self.apellido)
 print(​"Tengo "​, self.edad, ​" años"​)
 print(​"Y soy"​, (self.sexo))

Creación de un objeto persona

p1 = Persona(​"Araceli"​, ​"Acosta"​, ​25​, ​"Mujer"​)
p2 = Persona(​"Eduardo"​, ​"Corona"​, ​30​, ​"Hombre"​)

p1.yo_soy()

p2.yo_soy()

Su salida es la siguiente:

Hola, me llamo: Araceli Acosta

Tengo 25 años

Y soy Mujer

Hola, me llamo: Eduardo Corona

Tengo 30 años

Y soy Hombre

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Ejercicio 15: Crear una Clase
Edite el código ​ejercicio15.ipynb​ en COLAB
Defina la clase automovil, la cual debe tener los atributos:

● tanque (float) con valor inicial de 0.0
● velocidad (float) con valor inicial de 0.0
● ocupantes (int) con valor inicial de 0
● encendido(bool) valor inicial de False

Y los siguientes métodos sin definir (use la palabra reservada ​pass​):
● encender_apagar
● cargar_gasolina
● conducir
● dar _un_ray

Resultado esperado:
El carro tiene:

Atributos: 0.0 0.0 0

Encendido: False

None

None

None

None

Ejercicio 16: Definir métodos
Edite el código ​ejercicio16.ipynb​ en COLAB
El rango de valores para los atributos es
de 0 a 100 para tanque
de 0 a 160 para velocidad
de 0 a 5 para ocupantes
Controle utilizando condicional ​if​ dentro de los métodos que los ocupen

Defina el comportamiento de los métodos de la clase automovil:

● Encender_apagar, sin argumentos ()
si el auto está apagado y tiene gasolina

éste se enciende y se añade 1 ocupante (el conductor)
si está encendido

deberá apagarse y los ocupantes serán 0 (todos salen)

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

● Cargar_gasolina. Recibe como argumento (litros(float)), la cantidad que se le va a
agregar

Cargar tanque con litros, si litros + tanque > 100
Dejar el tanque a 100

● Conducir, recibe de argumentos(velocidad(float), tiempo(int)), el tiempo representa
horas, con un máximo de 10 horas y un mínimo de 1 hora

Al conducir correrá un ciclo for de 0 hasta tiempo
La gasolina se drenara con la ecuación:

Tanque = Tanque - velocidad * ocupantes / 8.2
● Dar_un_ray, recibe de argumento (personas(int))

Al igual que tanque, si ocupantes + personas > 5
Ocupantes = 5

Se puede recibir un negativo (personas salen), si ocupantes + personas < 1
Ocupantes = 1 (se queda el conductor)

Resultado esperado:

Gasolina: 100

Encendido: ​True​, personas 1
Me quedan 60.975610 litros

Somos 4 en el carro

Me quedan 12.195122 litros

Encendido: ​False​, personas 0

Módulos y paquetes
Los módulos:
Son principalmente los archivos (.py) que contienen funciones de definición de código de Python, clase,
variables, etc. con un sufijo .py añadido en su nombre de archivo.

Pueden tener diferentes funciones, variables y clases en un archivo. También podemos llamarlos bibliotecas.
Los paquetes Python (packages):

Los paquetes permiten una estructura jerárquica de espacios de nombres de módulos, utiliza notación de
puntos. De la misma manera que los módulos ayudan a evitar colisiones entre nombres de variables globales,
los paquetes ayudan a evitar colisiones entre nombres de módulos.

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Los módulos y paquetes pueden ser importados con la siguiente sintaxis:
import <nombre_del_modulo>

from <nombre_del_modulo> import <nombre, nombre,… >

import < nombre_del_modulo > as <alias>

from <nombre_del_modulo> import <nombre> as <alias>

De sklern/datasetes importa el método para cargar

from​ sklearn.datasets ​import​ load_digits

importa el paquete para dibujar plots, y le pone un apodo

import​ matplotlib.pyplot ​as​ plt
"plt" es un apodo, puede ser cualquier palabra no reservada

ahora "plt" es lo mismo que escribir "matplotlib.pyplot"

digits = load_digits() ​# asqui se cargan los datos
print(digits.data.shape)

plt.gray() = matplotlib.pyplot.gray()

plt.gray() ​# ¿Más bonito no? :)
plt.matshow(digits.images[​0​])
plt.show()

Su salida es la siguiente:

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Ejercicio 17: Matplotlib

“Matplotlib se parece mucho a utilizar los plot en matlab”
Edite el código ​ejercicio17.ipynb​ en COLAB ​para que no marque errores, vea la
documentación en la página oficial de matplotlib

Resultado esperado:

Ejercicio 18: Plot de una función
Edite el código ​ejercicio18.ipynb​ en COLAB
Con base en el ejercicio anterior, dibuje en un mismo plot las funciones:
f1(x) = 2x + 1
f2(x) = 5x^2 + 3x^2 + x + 0.5

Utilice las funciones anónimas ​lambda, ​cree el arreglo de valores x de [-10, 10] con una
resolución de 0.1 para plotear ambas funciones​.

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Resultado esperado:

Ejercicio 19: Arreglos numpy
Los arrays Numpy son una excelente alternativa a las listas de Python. Algunas de las ventajas clave
de los arrays Numpy es que son rápidos, fáciles de trabajar con ellos, y ofrece a los usuarios la
oportunidad de realizar cálculos a través de arrays completos.

Edite el código ​ejercicio19.ipynb​ en COLAB

● Convierta un arreglo de python a un arreglo numpy
● Cree un arreglo numpy con los números del 1 al 12, utilice arange
● Convierta el arreglo numpy a un a matriz de 4 filas x 3 columnas
● Convierta el arreglo numpy a un a matriz de 2 filas x 6 columnas
● Intente convertir en una matriz de 7 x 2, saque sus conclusiones

Resultado esperado:

<​class​ '​list​'>
<​class​ '​numpy​.​ndarray​'>
numeros​: [1 2 3 4 5 6 7 8 9 10 11 12]
tipo(numeros) <​class​ '​numpy​.​ndarray​'>
[[1 2 3]

 [4 5 6]

 [7 8 9]

 [10 11 12]]

[[1 2 3 4 5 6]

 [7 8 9 10 11 12]]

Traceback (most recent call last):

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

 ValueError: cannot reshape array of size 12 into shape (7,2)

Ejercicio 20: OS escritura de archivos

El módulo os de Python le permite a usted realizar operaciones dependiente del Sistema Operativo como
crear una carpeta, listar contenidos de una carpeta, conocer acerca de un proceso, finalizar un proceso, etc.

Edite el código ​ejercicio20.ipynb​ en COLAB

● Cree una carpeta llamada folder_1, si esta ya esta creada borrela y cree una nueva
● Cree un archivo CSV de nombre “archivo.csv” dentro de la carpeta folder_1

○ Debe tener el encabezado “número”, “color”
○ Con un ciclo for itere la lista de colores
○ En cada ciclo escribirá una fila en el archivo que contiene:

■ <el_ciclo_actual_del_for>, <el_color_actual_de_la_lista>
● Abra el archivo y examine su contenido.

Resultado esperado:
Un archivo “archivo.csv” dentro de una carpeta “folder_1” con los datos

número,color

0​,rojo
1​,verde
2​,azul
3​,magenta
4​,cian
5​,amarillo
6​,marrón
7​,violeta
8​,naranja
9​,blanco
10​,negro
11​,gris

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

https://entrenamiento-python-basico.readthedocs.io/es/latest/leccion7/archivos.html#leer-archivo

Ejercicio 21: Lectura de archivos csv
Requiere del archivo creado por el ejercicio 16.

Edite el código ​ejercicio21.ipynb​ en COLAB

● Lea el archivo.csv creado por el ejercicio 16
● Saltarse el encabezado del archivo ['número', 'color']
● En un diccionario guarde fila por fila del archivo, donde el dato de la primer columna es

la llave, y la segunda columna el valor con formato
Diccionario = {int:str, int:str, ...}

Resultado esperado:

[​'0'​, ​'rojo'​]
[​'1'​, ​'verde'​]
[​'2'​, ​'azul'​]
[​'3'​, ​'magenta'​]
[​'4'​, ​'cian'​]
[​'5'​, ​'amarillo'​]
[​'6'​, ​'marrón'​]
[​'7'​, ​'violeta'​]
[​'8'​, ​'naranja'​]
[​'9'​, ​'blanco'​]
[​'10'​, ​'negro'​]
[​'11'​, ​'gris'​]
Diccionario:

{0: ​'rojo'​, 1: ​'verde'​, 2: ​'azul'​, 3: ​'magenta'​, 4: ​'cian'​, 5: ​'amarillo'​, 6: ​'marrón'​, 7:
'violeta'​, 8: ​'naranja'​, 9: ​'blanco'​, 10: ​'negro'​, 11: ​'gris'​}

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Archivos en COLAB

Ejercicio 22: Cargar archivos a COLAB
Siga las instrucciones paso a paso
Abra el código ​ejercicio22.ipynb​ en COLAB

● Despliegue la pestaña que se encuentra señalada en la imagen

● Seleccione la pestaña Files

● Ejecute la primer celda y seleccione el botón “Elegir archivos”, busque la carpeta

images.zip que se le compartio con este material en su equipo

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

● Ejecute la segunda celda que descomprime el archivo, verifique que el nombre en ​path

sea el mismo que el archivo que subió

Resultado esperado:
obtendrá la carpeta descomprimida “images”

Ejercicio 23: Open CV2
Requiere de la carpeta obtenida por el ejercicio 22.

Edite el código ​ejercicio23.ipynb​ en COLAB

● Complete la primera celda
● En la segunda celda:

○ Guarde en una lista el contenido de la carpeta “images”
○ Convierta la lista a una lista numpy e imprima sus dimensiones con shape

● El la tercera celda imprima las dimensiones de cada imagen

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Resultado esperado Celda 2:

images/test4.jpg

images/test5.jpg

images/test_image.png

images/tigre.jpg

images/test0.jpg

images/gato.jpeg

images/test2.jpg

images/img_withheatmap.jpg

images/test3.jpg

images/test6.jpg

images/elephant.jpeg

images/bici1.jpg

images/perro.jpeg

images/indian_elephant.jpg

images/persona.jpg

images/caballo.jpg

images/test1.jpg

imagenes.shape = (17,)

Resultado esperado Celda 3:

imagen 0 shape = (720, 1280, 3)

imagen 1 shape = (720, 1280, 3)

imagen 2 shape = (720, 1280, 3)

imagen 3 shape = (369, 642, 3)

imagen 4 shape = (720, 1280, 3)

imagen 5 shape = (190, 265, 3)

imagen 6 shape = (720, 1280, 3)

imagen 7 shape = (600, 899, 3)

imagen 8 shape = (720, 1280, 3)

imagen 9 shape = (720, 1280, 3)

imagen 10 shape = (600, 899, 3)

imagen 11 shape = (432, 768, 3)

imagen 12 shape = (168, 300, 3)

imagen 13 shape = (600, 1000, 3)

imagen 14 shape = (600, 800, 3)

imagen 15 shape = (1600, 2560, 3)

imagen 16 shape = (720, 1280, 3)

Ejercicio 24: Copiar y reescalar imágenes
Requiere de la carpeta obtenida por el ejercicio 22.

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Edite el código ​ejercicio24.ipynb​ en COLAB

● De la carpeta “images”, cargue sólo las imágenes tigre.jpg, perro.jpeg, gato.jpeg y
caballo.jpg
Tenga cuidado con la extensión, “jpeg” es diferente de “jpg”

● En la segunda celda reescale las 4 imágenes a un tamaño de 150x150 y guardelas en
una carpeta llamada “copia”, si la carpeta no existe debe crearla. Guarde todas las
copias con extensión jpg, utilice split para mantener los nombres originales

Resultado esperado Celda 1:

(369, 642, 3)

(168, 300, 3)

(190, 265, 3)

(1600, 2560, 3)

Resultado esperado Celda 2:

copia/tigre.jpg

(150, 150, 3) <​class​ '​numpy​.​ndarray​'>
copia​/​perro​.​jpg
(150, 150, 3) <​class​ '​numpy​.​ndarray​'>
copia​/​gato​.​jpg
(150, 150, 3) <​class​ '​numpy​.​ndarray​'>
copia​/​caballo​.​jpg
(150, 150, 3) <​class​ '​numpy​.​ndarray​'>

Resultado esperado en COLAB:
La carpeta copia con las 4 imágenes de tamaño 150x150

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Ejercicio 25: Plot de imágenes
Requiere de la carpeta obtenida por el ejercicio 24.
Edite el código ​ejercicio25.ipynb​ en COLAB

● En la primera celda, cargue las 4 imágenes de la carpeta “copia”
Resultado esperado Celda 1:

copia/tigre.jpg

copia/gato.jpg

copia/perro.jpg

copia/caballo.jpg

● En la segunda celda, haga un plot con matplotlib que muestre las 4 imágenes en forma

de matriz 2x2

Resultado esperado Celda 2:

● Modifique la primer celda nuevamente para corregir los canales de las imágenes y corra

nuevamente ambas celdas, busque en la documentación de CV2

Nuevo resultado esperado Celda 2:

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Ejercicio 26: Rectangulos con CV2
Requiere de la carpeta obtenida por el ejercicio 22.

Edite el código ​ejercicio26.ipynb​ en COLAB
Cargue la imagen “test1.jpg” de la carpeta “images”. Con CV2 cree 2 rectángulos (rojo y
verde), el rojo deberá encerrar al carro negro y el color verde al carro blanco.

Resultado esperado:

Ejercicio 27: numpy save npz
numpy.savez()​ Guarda varios arreglos en un solo archivo en formato .npz sin comprimir.
En este ejercicio guardará datos con numpy en un tipo de archivo, posteriormente recuperara la información
de ese mismo archivo.
Edite el código ​ejercicio27.ipynb​ en COLAB
Cargue el conjunto de datos ​boston de sklearn ​en la primer celda y observe las dimensione de
las tuplas “data” y “target”. Itere los primeros 10 datos de ambas tuplas en un ciclo for al
mismo tiempo.

● En la celda 2 guarde los datos como un archivo npz
● En la tercer celda recupere los datos e imprima para corroborar su integridad

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html

Resultado esperado Celda 1:
X.shape = (506, 13)

Y.shape = <​class​ '​tuple​'>
dato​ 0 :
X= [0.0063218.02.310.00.5386.57565.24.091.0296.015.3396.94.98]

Y= 24.0

dato 1 :

X= [0.027310.07.070.00.4696.42178.94.96712.0242.017.8396.99.14]

Y= 21.6

dato 2 :

X= [0.027290.07.070.00.4697.18561.14.96712.0242.017.8392.834.03]

Y= 34.7

dato 3 :

X= [0.032370.02.180.00.4586.99845.86.06223.0222.018.7394.632.94]

Y= 33.4

dato 4 :

X= [0.069050.02.180.00.4587.14754.26.06223.0222.018.7396.95.33]

Y= 36.2

dato 5 :

X= [0.029850.02.180.00.4586.4358.76.06223.0222.018.7394.125.21]

Y= 28.7

dato 6 :

X= [0.0882912.57.870.00.5246.01266.65.56055.0311.015.2395.612.43]

Y= 22.9

dato 7 :

X= [0.1445512.57.870.00.5246.17296.15.95055.0311.015.2396.919.15]

Y= 27.1

dato 8 :

X= [0.2112412.57.870.00.5245.631100.06.08215.0311.015.2386.6329.93]

Y= 16.5

dato 9 :

X= [0.1700412.57.870.00.5246.00485.96.59215.0311.015.2386.7117.1]

Y= 18.9

Resultado esperado Celda 2:
[0.63, 1800.0, 231.0, 0.0, 53.8, 657.5, 6520.0, 409.0, 100.0, 29600.0, 1530.0, 39690.0, 498.0] 24.0

[2.73, 0.0, 707.0, 0.0, 46.9, 642.1, 7890.0, 496.71, 200.0, 24200.0, 1780.0, 39690.0, 914.0] 21.6

[2.73, 0.0, 707.0, 0.0, 46.9, 718.5, 6110.0, 496.71, 200.0, 24200.0, 1780.0, 39283.0, 403.0] 34.7

[3.24, 0.0, 218.0, 0.0, 45.8, 699.8, 4580.0, 606.22, 300.0, 22200.0, 1870.0, 39463.0, 294.0] 33.4

[6.9, 0.0, 218.0, 0.0, 45.8, 714.7, 5420.0, 606.22, 300.0, 22200.0, 1870.0, 39690.0, 533.0] 36.2

[2.99, 0.0, 218.0, 0.0, 45.8, 643.0, 5870.0, 606.22, 300.0, 22200.0, 1870.0, 39412.0, 521.0] 28.7

[8.83, 1250.0, 787.0, 0.0, 52.4, 601.2, 6660.0, 556.05, 500.0, 31100.0, 1520.0, 39560.0, 1243.0] 22.9

[14.46, 1250.0, 787.0, 0.0, 52.4, 617.2, 9610.0, 595.05, 500.0, 31100.0, 1520.0, 39690.0, 1915.0] 27.1

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

[21.12, 1250.0, 787.0, 0.0, 52.4, 563.1, 10000.0, 608.21, 500.0, 31100.0, 1520.0, 38663.0, 2993.0] 16.5

[17.0, 1250.0, 787.0, 0.0, 52.4, 600.4, 8590.0, 659.21, 500.0, 31100.0, 1520.0, 38671.0, 1710.0] 18.9

Resultado esperado Celda 3:
X= 0.631800.00231.000.0053.80657.506520.00409.00100.0029600.001530.0039690.00498.00

Y= 24.0

X= 2.730.00707.000.0046.90642.107890.00496.71200.0024200.001780.0039690.00914.00

Y= 21.6

X= 2.730.00707.000.0046.90718.506110.00496.71200.0024200.001780.0039283.00403.00

Y= 34.7

X= 3.240.00218.000.0045.80699.804580.00606.22300.0022200.001870.0039463.00294.00

Y= 33.4

X= 6.900.00218.000.0045.80714.705420.00606.22300.0022200.001870.0039690.00533.00

Y= 36.2

X= 2.990.00218.000.0045.80643.005870.00606.22300.0022200.001870.0039412.00521.00

Y= 28.7

X= 8.831250.00787.000.0052.40601.206660.00556.05500.0031100.001520.0039560.001243.00

Y= 22.9

X= 14.461250.00787.000.0052.40617.209610.00595.05500.0031100.001520.0039690.001915.00

Y= 27.1

X= 21.121250.00787.000.0052.40563.1010000.00608.21500.0031100.001520.0038663.002993.00

Y= 16.5

X= 17.001250.00787.000.0052.40600.408590.00659.21500.0031100.001520.0038671.001710.00

Y= 18.9

Extras

Histogramas
Los ​histogramas en python es un gráfico que muestra la distribución de frecuencias de una variable dada,
para un conjunto de datos.

Bins: Son los recipientes contenedores de datos, divide el histograma completo en sub-intervalos y el valor de
cada sub-intervalo se define con el tamaño de bins.

Ver documentación de ​numpy.histogram

Ejercicio 28: Histogramas
Edite el código ​ejercicio28.ipynb​ en COLAB

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

https://plot.ly/matplotlib/histograms/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html

Requiere el conocimiento adquirido en los ejercicios 22, 25 y 27.
● Suba a COLAB el archivo “datos_np.npz” que se le compartio con este material

● En la primer celda, recuerde cómo obtener datos de un archivo npz y extraiga los datos
en la variable y

Resultado esperado Celda 1:

Y_data

(10000,)

● En la segunda celda deberá mostrar el histograma de los datos recuperados

Resultado esperado Celda 1:

● En la tercer celda, obtenga el número muestras de cada clase (los numeros 0, 1, … 9) e

imprima la información
○ Apóyese en ​numpy.where

Resultado esperado Celda 1:
Clase: 0

muestras = 980

Clase: 1

muestras = 1135

Clase: 2

muestras = 1032

Clase: 3

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html

muestras = 1010

Clase: 4

muestras = 982

Clase: 5

muestras = 892

Clase: 6

muestras = 958

Clase: 7

muestras = 1028

Clase: 8

muestras = 974

Clase: 9

muestras = 1009

Aplicando conceptos
Los siguientes ejercicios pondrán a prueba los conocimientos adquiridos a lo largo de este documento

Ejercicio 29: plots 2D y 3D
Edite el código ​ejercicio29.ipynb​ en COLAB
Busque la información
Numpy: meshgrid, stack, linspace
Matplotlib: scatter, add_subplot, plot, plot_wireframe, contourf

Ejecute la primer celda de ejemplo para analizar el código
En la segunda celda realice:

● Crear un espacio de valores de [-100 a 100]
● Genere un grid X, Y para plotear la superficie
● Definir la función z
● Genere 10 puntos (x, y) aleatorios
● Cree un arreglo vertical de coordenadas (x, y)

Resultado esperado Celda 2:
[99 -30 -74 -60 -71 -4 19 -9 61 19]

[-7 51 2 27 -78 75 35 2 43 -76]

punto [99 -7]

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Z= 9850

punto [-30 51]

Z= 3501

punto [-74 2]

Z= 5480

punto [-60 27]

Z= 4329

punto [-71 -78]

Z= 11125

punto [-4 75]

Z= 5641

punto [19 35]

Z= 1586

punto [-9 2]

Z= 85

punto [61 43]

Z= 5570

punto [19 -76]

Z= 6137

En la tercer celda realice:

● El plot 2D de la superficie z con contourf
● Dibuje los 10 puntos generados sobre el mismo plot

Resultado esperado Celda 3:

En la cuarta celda:

● El plot 3D de la superficie z con plot_wireframe

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

● Dibuje los 10 puntos generados sobre el mismo plot

Resultado esperado Celda 4:

Ejercicio 30: Convolución 2D
Edite el código ​ejercicio30.ipynb​ en COLAB

● Suba la imagen “lena_color_256.tif” a COLAB
● En la primer celda cargue la imagen e implemente el filtro

|1 0 -1|
|0 0 0|
|-1 0 0|

Resultado esperado Celda 1:

kernel:

 [[1. 0. -1.]

 [0. 0. 0.]

 [-1. 0. 1.]]

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

● En la segunda celda genere una sub imagen de 40x40 con coordenada origen(110, 100)
de la imagen original
Cree el filtro:

|0 1 0|
|1 1 1|
|0 1 0|

Resultado esperado Celda 2:

(3, 3)

[[0 1 0]

 [1 1 1]

 [0 1 0]]

● En la tercer celda implemente el algoritmo de la convolución, siga las pistas del código.
Imprima el resultado de la función convolucion2D y compárela con la implementación
de CV2

Resultado esperado Celda 3:

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

Brasilia No. 92B Col. San Pedro Zacatenco C.P. 07360 CDMX Tel. 55 3994 0156

